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We discuss the problem of nonunitary equivalence, via positivity-preserving 
similarity transformations, between the unitary groups associated with determin- 
istic dynamical evolution and semigroups associated with stochastic processes. 
Dynamical systems admitting such nonunitary equivalence with stochastic Mar- 
kov processes are said to be intrinsically random. In a previous work, it was 
found that the so-called Bernoulli systems (discrete time) are intrinsically ran- 
dom in this sense. This result is extended here by showing that a more general 
class of dynamical systems---the so-called K systems and K flows---are intrinsi- 
cally random. The connection of intrinsic randomness with local instability of 
motion is briefly discussed. We also show that Markov processes associated 
through nonunitary equivalence to nonisomorphic K flows are necessarily non- 
isomorphic. 

KEY WORDS: Dynamical systems; Markov processes; K flows; H theorem; 
time operator; irreversibility; instability. 

1. INTRODUCTION 

The study of the possible connections that may exist between deterministic 
dynamics and probabilistic processes is of obvious importance for the 
foundation of nonequilibrium statistical mechanics. As is well known, 
stochastic Markov processes provide the best possible models to represent 
irreversible evolution admitting a Lyapounov functional or % function. The 
important question, thus, is how is the passage from deterministic dynamics 
to probabilistic Markov processes to be achieved? 

It is generally believed that probabilistic processes can come from 
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deterministic dynamics only as a result of some form of "coarse graining" 
and approximations which necessarily involve a loss of information. In this 
connection let us recall that the generally adopted procedure for obtaining, 
say, a Master equation from dynamics involves an initial "contraction of 
description" brought about by a projection operator followed by suitable 
limit procedure designed to restore the Markovian character of the evolu- 
tion which is generally lost in the process of "contraction of description." 

Recently a totally different possibility for obtaining stochastic Markov- 
ian evolution from deterministic dynamics has been proposed (see Ref. 1 
and the earlier discussion in Ref. 2). The basic idea of this approach is to 
obtain a stochastic Markov process from a deterministic dynamics simply 
through a "change of representation" brought about by a (necessarily) 
nonunitary but invertible similarity transformation. More explicitly, let U t 
denote the unitary group (acting on the space of distribution functions on 
the phase space) which is induced from the dynamical group T t describing 
the (deterministic) motion of the phase points. One considers now the 
possibility of defining an invertible similarity transformation A mapping 
states (i.e., positive and normalized distribution functions) to states such 
that AUrA - 1 - -  W* represents the semigroups of a stochastic Markov 
process. The existence of such a A means that under the "change of 
representation" p ~ A p  the originally given deterministic dynamics de- 
scribed by the unitary group Ut is transformed into the stochastic Markov- 
ian dynamics associated with Wt*. The important point to note is that this 
scheme for the passage from deterministic to stochastic dynamics involves 
no approximation and (as the required invertibility of A assures) no "con- 
traction of description" or coarse graining. 

For this reason dynamical systems admitting the existence of a similar- 
ity transformation A with the above-stated properties have been termed 
intrinsically random dynamical systems in Ref. 1. 

How can it be possible that a "change of representation" can lead 
from deterministic to stochastic evolution? Should not a change of repre- 
sentation in classical mechanics be given simply by a canonical transforma- 
tion of the phase space into itself? As suggested in ReL 1 the answer to this 
is to be found in the concept of instability of motion. If the dynamical 
motion is sufficiently unstable so that each open region of the phase space, 
no matter how small, rapidly spreads out in time to far-separated regions in 
phase space then, obviously, one cannot arrive at the concept of the phase 
space trajectories by considering the motion of smaller and smaller initial 
regions of the phase space. Now, a physical measurement is necessarily of 
finite accuracy and hence can determine the initial conditions of the system 
to lie in only an open region of the phase space, which may be taken to be 
arbitrarily small but which can never be reduced to an individual phase 
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point. This limitation on the possible physical measurements is of no 
consequence for stable dynamical evolution as one can arrive at the 
concept of phase space trajectory as the idealized limit of the motion of 
smaller and smaller phase space regions. But as we have seen, this is no 
longer possible in the case of sufficiently unstable dynamical motion. Thus 
for such systems the very concept of deterministic motion along phase 
space trajectories becomes an idealization which is beyond the possibility of 
physical realization even as a limiting case. As a consequence the fundamen- 
tal objects of dynamical theory must not, now, be the individual phase 
points or trajectories but open regions or more generally, the distribution 
functions on the phase space: A change of representation of dynamics may 
therefore correspond now to more general transformations acting on the 
distribution function than those given by the canonical transformations of 
the phase space into itself. 

According to the viewpoint expressed above the appearance of strong 
forms of instability of motion marks the breakdown of the deterministic 
description of dynamics given in terms of the phase space trajectories. In 
this situation it is both possible and natural to pass to a new representation 
of dynamics (provided by necessarily "nonlocal" transformations on the 
phase space) which eliminates from the theory the physically unrealizable 
idealization of determiministic motion along phase space trajectories and 
results in a stochastic Markov process. The notion of intrinsic randomness 
formalized this idea. 

The consistency of this conception of the close link between intrinsic 
randomness and instability is supported by the result that the instability 
leading to mixing on phase space (in the sense of ergodic theory) is a 
necessary condition for the system to be intrinsically random. (1) As regards 
sufficiency, it was shown in Ref. 1 that the so-called Bernoulli systems 
(discrete time) are intrinsically random. (Actually only the simplest system 
of the Bernoulli systems--the so-called baker's transformation--is explicitly 
considered in Ref. 1. But as emphasized there it is not difficult to see that 
the same considerations can be generalized to an arbitrary Bernoulli 
system. (16~) The question as to whether Bernoulli flow (continuous time) 
and more generally the K systems and K flows are also intrinsically 
random, however, remained unsettled. The main purpose of this paper is to 
answer this question in the affirmative. 

Let us mention that a great variety of systems of physical interest-- 
infinite ideal gas and hard rods system, (3'4) motion of a billiard ball on a 
table with convex obstacle, (5'6) a hard sphere gas, (7) and geodesic flow on a 
manifold of negative curvature, (8'9) etc.--are known to be K flows and even 
Bernoulli. In view of the intrinsic randomness of K flows, one can associate 
with these systems stochastic Markov processes that are obtained from the 
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underlying deterministic motion through nonunitary but invertible similarity 
transformations. It would be interesting to examine the physical meaning of 
these Markov processes and discuss questions such as the conditions under 
which they are diffusion processes. 

2. INTRINSIC RANDOMNESS, OPERATOR TIME, AND INSTABILITY 
OF MOTION 

In this section we recall the precise definition of intrinsic randomness 
and the "canonical" procedure for constructing the transformation A which 
leads from deterministic to stochastic dynamics. For more details see Refs. 
1 and 10. 

Let us consider an abstract dynamical system {F, ~ ,  #, Tt}. Here F 
denotes the phase space of the system equipped with the o-algebra ~ of 
subsets of F, T t a group of measurable motions mapping F onto itself and 
preserving the measure/z. For example, F could be the energy surface of a 
classical dynamical system, T t the group of dynamical evolution, and/~ the 
invariant measure whose existence is assured by Liouville's theorem. For 
convenience, we shall assume the measure/~ to be normalized:/~(F) = 1. As 
is well known, the evolution of density functions O in L~ under the given 
deterministic dynamics is described by the unitary group U t induced by Tt: 

(Utp)(~o) = p ( T  ,co), ~0 E F 

Every deterministic evolution thus defines a unitary group. Conversely 
(under the mild assumption that (F, ~ ,  #) is a standard measure space) 
every unitary group which preserves positivity (i.e., maps nonnegative 
functions to nonnegative functions and leaves the constant functions un- 
changed) is induced by a group T t of measure-preserving transformation on 
F (see, for example, Ref. 11). 

On the other hand, stochastic Markov processes on the state space F, 
preserving/z, are associated with contraction semigroups of L~.(12) In fact, 
let P(t, ~o, A) denote the probability of transition from the point ~o E F to the 
region A E ~ in time t. Then the operators W t defined by 

(Wtf)(~0) = f f(,o')e(t,,o,d,o'), f E L~ 

form a semigroup for t/> 0 having the following properties: 
(i) W t preserves positivity (i.e., f(w) >1 0 implies W,f >1 0 for t I> 0); 
(ii) Wtl = 1. 
The evolution of the distribution functions ~ under the Markov process 

is described now by the adjoint semigroup W* which also preserves 
positivity since W t does: tS-~ Ot = Wt*tS. Since the measure/z is an invariant 
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measure for the process (or equivalently the microcanonical distribution 
function 1 is the equilibrium state of the process) we also have the follow- 
ing: 

(iii) W*I = 1. 
Every Markov process on F with stationary distribution /z is thus 

associated with a contraction semigroup satisfying the conditions (i)-(iii). 
Conversely every contraction semigroup W t on L~ satisfying the above 
conditions comes from a stochastic Markov process, the transition proba- 
bilities P(t,  o~, A) being given by 

e (  t, a)  = ( 

Here rpa denotes the characteristic (or indicator) function of the set A. 
In the following we are interested in a special class of Markov 

processes whose semigroups W t satisfy [in addition to the conditions 
(i)-(iii)] the following condition: 

(iv) II WT(p - 1)ll decreases strictly monotonically to 0 as t ~ oo [f(t) is 
strictly monotonically decreasing if t < s ~ f ( t )  > f(s)] for all states p ~ 1 
(i.e., for all nonnegative distribution functions p ~ 1 with frpdt~ = 1). This 
condition expresses the requirement that any initial distribution p tends 
strictly monotonically in time to the equilibrium distribution 1. For such 
processes the functional 

I1~,112 = frPt2d/x, (Pt = Wt*P) 

and indeed any other convex functional including the usual expression for 
negative entropy 

~p t lnp td t  t 

is an ~ function. Such Markov processes thus provide the best possible 
model of irreversible evolution obeying the law of monotonic increase of 
entropy. 

Semigroups satisfying the conditions (i)-(iv) above have been called 
strong Markov semigroups in Ref. 1. The term strong Markov process is, 
however, generally used in probability theory in an entirely different sense. 
To avoid this confusion, we shall henceforward refer to semigroups satisfy- 
ing conditions (i)-(iv) as monotonic Markov semigroups. 

The intrinsic randomness of dynamical systems may now be defined in 
terms of the existence of a "change of representation" under which the 
unitary group associated with the deterministic dynamics is transformed 
into a monotonic Markov semigroup. More explicitly, the deterministic 
dynamics with induced unitary group U t on L~ is said to be intrinsically 
random if there exists a (bounded) linear operator A defined on L~ such 



116 Goldsteln, Mlsra, and Courbage 

that 
(a) A preserves positivity: Ap > 0 if p > O; 
(b) f rodg = frAodg; 
(c) A 1 = 1; 
(d) A has a densely defined inverse A-l ;  
(e) AUtA- 1 ____. VI/', (for t > 0) is a contraction semigroup satisfying the 

conditions (i)-(iv) formulated above. 
The conditions (a) and Co) are necessary conditions for p--> Ap =- t~ to 

be interpreted as a change of representation. The condition (d) assures that 
the transformation does not involve "contraction of description" or coarse 
graining; the latter being given by projection operators. The condition (e) 
expresses the fact that under the change of representation p ~ A o  the 
deterministic evolution p ~ Utp is transformed into a stochastic Markovian 
evolution: Ap-~ A Utp = W*Ap described by IV,*. 

It may be noted that we have not required that A -1 should also 
preserve positivity. Indeed the following proposition shows that if one 
requires this then one is necessarily confined to the change of representa- 
tions provided by (canonical) point transformations of the phase space onto 
itself which cannot, obviously, lead from deterministic dynamics to stochas- 
tic processes. 

Proposition 1 [cf. Refs. 11 and 15]. Let A, in addition to satisfying 
conditions (a), (b), and (c) given above, also satisfy the following: (a') A-1 
preserves positivity, and (b') the domain of A-  l contains all the characteris- 
tic functions ~0a (A ~ ~).  Then, there exists a measure-preserving point 
transformation T of F onto itself such that 

(Ap)(~) = p(T~) 

Thus for intrinsically random systems the reverse passage ~-~A-lfi,  
which leads from the stochastic description of the time evolution provided 
by Wt* to the deterministic dynamics U t, cannot physically be interpreted 
as a change of representation. One might say that the "reverse operation" 
leading to the deterministic description, though mathematically well de- 
fined, is a physically inadmissible operation. This is in conformity with the 
view that intrinsic randomness is a property only of highly unstable 
dynamical motion and in this situation the deterministic description of 
dynamic development constitutes an unphysical idealization. The above 
proposition shows also that A U,A-l = W*, although defined for all t, can 
be required to be positivity preserving only either for positive t or for 
negative t but not for both at the same time. 

Thus the passage to the stochastic description as contemplated in 
defining intrinsic randomness naturally breaks the symmetry between the 
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"forward" and "backward" directions of time, causing the temporal evolu- 
tion to be described by a semigroup rather than a group. 

Let us now turn to the method of constructing the A transformation. A 
first remark to this end is that if AUtA- 1 is a monotonic Markov semigroup 
then the operator 

M =-- A*A 

is necessarily a Lyapounov variable for U r In this connection, by a 
Lyapounov variable for the group U t one means a positive operator M on L~ z 
such that the functional 

~(Pt) ~ ( Utp, MUtp) 

decreases strictly monotonically with t to its minimum value f~(1) for all 
initial states p ~ l, the single exception being the microcanonical ensemble 
for which the functional f~ is, obviously, constant (cf. Ref. 10). 

Intrinsic randomness thus implies the existence of Lyapounov vari- 
ables which expresses the inherent irreversibility of the dynamical evolu- 
tion. The existence of Lyapounov variables, on the other hand, is known (1~ 
to imply that the system must be at least mixing in the sense of ergodic 
theory. In this way, one sees once again the close connection between 
intrinsic randomness and instability of motion: Instability leading to mix- 
ing on the phase space is a necessary condition for the manifestation of 
intrinsic randomness. 

The foregoing remark shows that the A transformation (when it exists) 
may be constructed as essentially the "square root" of a Lyapounov 
variable. Now as described in Ref. 10, there is a general procedure for 
constructing the Lyapounov variables of a class of (abstract) dynamical 
systems, the so-called K flows. Briefly, for such systems one can construct 
an operator of "internal time" T which is defined to be a self-adjoint 
operator on % x  satisfying the relation 

U~'TU t = T +  tI (2.1) 

(Here %-o~ denotes the one-dimensional subspace spanned by the constant 
functions and %_x ~ denotes the orthogonal complement of % o~ .) 

An operator M of the form 

M = f ( T )  + P _ ~  (2.2) 

is then easily verified to be a Lyapounov variable if f ( T )  is taken to be an 
operator function of T (in the sense of functional calculus) corresponding 
to a bounded positive function f decreasing strictly monotonically to 0, and 
P_ ~r denotes the projection onto %_ oo- 

The operator A defined to be the positive square root of an operator M 
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of the form (2.2) is, obviously, again of the same form: 

A = h ( T )  + e _ ~  (2.2 3 

where h = f l / 2  is again a positive function decreasing strictly monotonically 
to 0. A possible strategy for establishing the intrinsic randomness of K 
flows would, therefore, be to show that for suitable choice of operator time 
T and of a monotonically decreasing positive function h the operator given 
by (2.2') as well as the semigroup W* = AUrA -I (for t >1 0) preserve 
positivity. We do this in the following section. 

3. NONUNITARY EQUIVALENCE BETWEEN THE UNITARY GROUP 
INDUCED BY K FLOWS AND MARKOV SEMIGROUPS 

Let (I', ~ ,  ~, Tt) be an abstract dynamical system. It is called a K flow 
(cf. Ref. 13) if there exists a o-subalgebra 80 C_ ~ with the following 
properties: 

(i) TtCs = 6-3 t C T , ~  o = ~, ,  t < s 
(ii) The o-algebra generated by all 6f x (with - o o  < X < + oo) coin- 

cides with the entire o-algebra of measurable sets of the system: 
+ o o  

v ~x --- 63 
~ =  --oo 

(iii) N~oo~x = ~ - ~  is the trivial o-algebra which consists only of sets 
of measure g or complements of such sets. 

Another characterization of K flows is that they have completely 
positive Kolmogorov entropy. (13) This latter characterization shows that the 
observed behavior of K flows contains an essential element of randomness. 
In fact, the complete positivity of Kolmogorov entropy may be interpreted 
to mean that the knowledge about the evolution of the system in the pas t  
obtained from an infinite repetition of any realistic measurement that 
corresponds to a partition of the phase space into a f ini te  number of 
disjoint cells is insufficient for predicting the result one would obtain if the 
same  measurement is performed in the future. Intuitively, then, the ob- 
served dynamical evolution of K systems is inherently nondeterministic in 
character. In the following we show that K flows are also intrinsically 
random in the stronger sense that the originally given deterministic evolu- 
tion is equivalent through a suitable change of representation which 
involves no coarse graining or contraction of description--to the stochastic 
evolution of a Markov process. 

Denote by Px the orthogonal projection operator onto L2(~'x, iz), the 
subspace of functions in L~ that are measurable with respect to ~x. The 
properties (i)-(iii) of ~x then translate, respectively, into the following 
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properties of Px: 
(i') Px < Px' if h < ~'; 
(ii') limx_~ooPx = I; 
(iii') limx.~_~P x = P-oo is the projection on the subspace spanned by 

the constant functions on F. Moreover, the obvious facts that 
(iv) T , ~  = ~-~+, and 
(v) T,~-_ o~ = ~ 

imply, respectively, the following: 
(iv') U7 e~ U, = P~_, 
(v,) t : *e  
Now let F x stand for the projections Px - P - ~  (X real). The family F x 

is then a spectral family of projections (or resolution of identity) in %-~o0. 
Moreover, owing to properties (iv') and (v'), the spectral family F x is a 
system of imprimitivity for the group Ut: 

U*F~U, = Fx_ , (3.1) 

The operator of "internal time" T mentioned in the preceding section may 
now be defined as the self-adjoint operator that has F x as its spectral family 
(cf. Ref. 10): 

T = fTt dE x (3.2) 

In fact, if T is given by (3.2) then the imprimitivity condition (3.1) on F x 
and the defining condition (2.1) on T are mutually equivalent. 

As is well known, the functional calculus of the self-adjoint operator T 
associates with the function h(k) of a real variable an operator function 
h (T) of T which is given by 

h (T)  = f h  (h) aF x (3.3) 

To establish the intrinsic randomness of K flows let us now study the 
positivity-preserving property of operator A of the form 

A = h(T)  + P-oo (2.2') 

as well as of the semigroup A UtA-1 = Wt, (for t ~ 0). 

Theorem 1. Let h(h) be a positive and monotonically decreasing 
function with h ( - ~ ) <  1. Then the operator A of the form (2.2') is 
positivity preserving: f />  0 a.e. implies Af/> 0 a.e. 

To prove this we start with the following lemma. 

Lemma 2. The projection operator Px onto L2(~x, /z) is positivity 
preserving. 
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Proof of Lemma 2. Let f > 0 a.e. Define now a measure/,f on the o 
algebra fx by 

/zf(A) = fa f dt, 

for A E fx. It is clear that /,f is a nonnegative measure on fx, and it is 
absolutely continuous with respect to the measure/z restricted to fx [i.e., 
if(A) = 0 for A ~ fx implies/zf(A) -- 0]. 

Thus by Radon-Nykodym theorem, there exists an essentially unique 
function, say, X having the following properties: 

(i) fis measurable with respect to the a-algebra fx; 
(ii) f~fd~--/.tf(A), A E fix. [The essential uniqueness of f means 

that if f '  is another function satisfying (i) and (ii) then f =  f '  a.e. with 
respect to/,.] 

This function f is called the Radon-Nykodym derivative of /zf with 
respect to #; since both/z and/zf are nolmegative measures f > 0 a.e. I f  is, 
by definition, the conditional expectation E ( f  I fx) of f given fx.] 

Now let us consider the function Pff; since it belongs to L2(fx,/z) it is 
obviously measurable with respect to fx. Moreover, 

f~(P~)(o 0 d/~ = (P~0(, WA) = (f ,  PxWA) 

But if A E fx then P~CFA = ~Va SO that faPxfd# = (f ,  cp~)=/tf(A) for all 
A ~ fx. Thus owing to the essential uniqueness of Radon-Nykodym deriv- 
ative, 

P x f = / > O  a.e. �9 

Remark. The preceding argument is the standard recipe in probabil- 
ity theory for defining conditional expectations E ( f  I fx) and identifying Pf f  
with E ( f  Ifa). 

Proof of Theorem 1. It will suffice to show that (p, Ap') > 0 for 
every pair of nonnegative functions p, p' in L 2. Now, owing to the assumed 
form of A, we obtain 

<0, Ap'> = fh(X) d<,, F # >  + <p, P_ 

Partial integration of the first term on the fight then gives 

= h(oo)(p, Foop') - f ( p ,  Fxp')dh(X) + (P,P-ooP') <p, A0'> 

Use of the definition F x = P x -  P - ~  and rearrangement of terms finally 
yields 

(p, ap') = - f (p, Pxp')dh(a) + h(oo)(p,p') + (p,P_~op')(1 - h( -oo))  

(3.4) 
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For nonnegative O and p' all the terms in the right of (3.4) are individually 
nonnegative. This is so for the first term because (o, PAP') >>" 0 (owing to the 
positivity-preserving property of Pa and the fact that h(h) is chosen to be 
monotonically decreasing). Nonnegativity of the second and third terms is 
obvious. �9 

The preceding argument actually proves the slightly stronger result 
that if h(h) is strictly monotonically decreasing then A is "positivity 
improving," i.e., for any nonnegative function O'( ~ 0) and any measurable 
set A with/t(A) > 0, 

( ~ ,  Ap') = l a P '  dr > 0 

In fact, it follows from (3.4) with ~p~ replacing O that 

( ~ ,  At)') >>. - f (cpa, PAP') dh (~) 

Since h(h) is strictly monotonically decreasing and (r PAP') >1 0 the 
integral on the right must be strictly positive unless (r PAP') = 0 for at 
least some ~ in every interval. 

This latter possibility is, however, ruled out since 

lim (r PAP') = (~Pa, P -  ~P') 
.),--~ - oo 

> o  

This result shows that the action of A is highly "delocalizing" in the 
following sense: Even if the support of p' is confined to an arbitrarily small 
volume of the phase space F the support of the transformed function covers 
the entire phase space. Obviously such a transformation cannot be the 
multiplication operator by a function on the phase space, not can it be the 
induced operator from an underlying point transformation of the phase 
space. It is because of such delocalizing action of A that one may expect 
the change of representation P ~ AP to lead from deterministic to stochastic 
dynamics. 

Let us note that the requirements that A1 = 1 and (since A is self- 
adjoint) fo dl~ = fAo dl~ are an easy consequence of the construction of A. 
The existence of a densely defined inverse A-1 can also be easily assured 
by choosing h(~) to be strictly positive a.e. Thus to prove the intrinsic 
randomness of K flows it remains only to show that for a suitable choice of 
the function h(h) the operators W,* = A UtA-1 (for t/> 0) form a monotonic 
Markov semigroup (see Section 2 for definition). This part of this argument 
is essentially the same as the corresponding considerations in Ref. 1. But we 
supply the details for the sake of completeness. 

Now, A UtA-1 _ W7 are positivity-preserving for t/> 0 if and only if 
the operators Ut*A UtA-l (for t/> 0) preserve positivity. Using the imprimi- 
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tivity condition (3.1) on F x one sees that 

Ut*AU t = f h(X)d(U*FxUt) + e _ ~  

=fh(X + t)dFx + e-oo 

Since, on the other hand, 

A-a = f h-~) dF~ + P-~o 

the operators U*A UtA-1 are of the form 

=,. hQ, + t) 
U.AUrA -1 J h(X) dFx + P-oo 

According to Theorem 1, the operators U*A UtA-l (and hence W*) pre- 
serve positivity for t/> 0 if h(X) is so chosen that the functions 

fit(h) = h(X + t)/h(X) 

are monotonically decreasing functions of X for all t > 0. Finally, the 
requirement that for all states p S I  (p>>-O, fpd~= 1) [IWT(p-1)11--->0 
strictly monotonically with t can be assured by requiring h(X) to decrease 
strictly monoton&ally to 0 as X ~ oo. 

In fact, denoting p - 1 by p', we find 

II W*(p - 1)112 = (AUtA-lp ' ,AUtA- 'p  ') 

= ( A -  lp,, U, A2UtA - ]p,) 

= f h=(X)a<A-'o ', U*FaUtA-'o') + (A-lp',e_ooA-tp ' ) 

= fh2(X + t) a < A -  'o', FxA-1O') + (A-  lp,, p_ ~A- 10t ) 

Now, the term (A-lp ' ,P_~A-Ip')  vanishes identically since fpdlx= 1 
implies that P - 1 = P' (and hence A-Ip ') belongs to % ~ .  The first term 
decreases strictly monotonically to 0 as t o  + m because the integrand 
h2(X + t) is chosen to decrease strictly monotonically to 0 as t increases to 

Summarizing the proceeding considerations we obtain the following. 

Theorem 3. Let the abstract dynamical system (F, ~, /~,  T,} be a K 
flow, U t the unitary group induced by T t. Further, let F x and P_ ~o be the 
projections defined in the beginning of this section and h(? 0 a function 
satisfying the following conditions: 

(i) h(X) is strictly monotonically decreasing with limx_~h(X ) = 0 and 
h ( -  oo) < 1. 
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(ii) h(~ + s)/h(~) -= h](~) is a monotonically decreasing function of 
for every s/> 0. Suppose A is defined by 

A =f_+ffh(XldF~+ e_~ 

Then A is positivity improving, has a densely defined inverse A-1, and the 
operators AUtA- l __ Wt. form a monotonic Markov semigroup for t/> 0. 

The intrinsic randomness of K flows is therefore established once the 
class of functions h(~) satisfying the conditions (i) and (ii) is shown to be 
nonempty. 

Now condition (ii) means that [lnh(~ + s ) -  lnh(~)] is decreasing for 
s/> 0. In other terms, condition (ii) means that h(~) is logarithmically 
concave, i.e., h(~) is of the form 

h(~) = e -•(x) 

with 4~(~) convex. Thus conditions (i) and (ii) can be satisfied by choosing 
q~(~) to be a convex, positive function which increases to + oo as ~ ~ oo. 
For example, h(~) = e -(e~) satisfies conditions (i) and (ii). Finally it may be 
remarked that Theorem 3 and its proof remain valid also, essentially as 
stated, for K systems (discrete time). 

4. ISOMORPHISMS OF MARKOV PROCESSES ASSOCIATED WITH 
K FLOWS 

We have seen in the preceding sections how stochastic Markov pro- 
cesses can be obtained from K flows through nonunitary similarity transfor- 
mations A. We show now that this procedure associates nonisomorphic 
Markov processes with nonisomorphic K flows. In this connection, two 
Markov processes with transition probabilities Pl(t,w,A) and P2(t,w',h') 
[on state spaces (F] ,~  l , / q )  and (F2,~2, ~2), respectively] are said to be 
isomorphic if there exists a one to one map S from all of F l (except possibly 
a set of measure 0) onto the entire space F 2 (modulo again a set of measure 
0) such that (i) both S and S -  ] are measurable and measure-preserving 
and (ii) Pl(t, w, 4) = P2(t, Sw, SA). 

Let V: L~ ~ L~z be the unitary transformation induced by S: 

(Vp)(~) = 0(S -'0~) 

for p E L~Z, w ~ F 2. 
It is easy to verify that the condition (ii) on transition probabilities Pi 

of isomorphic processes is equivalent to the condition VW, O)V * -- Wt (2) 
where W, (i) (i = 1, 2) is the semigroup associated with the Markov process 
having transition probability Pi(t,., .) (cf. Section 2). 
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L e t  Ut (1) and Ut (z) be, respectively, the unitary groups induced from K 
flows TtO)and Tt (2). We suppose that the Markov processes A1Ut(OAi -~ 
= Wt (1)* and AEUt(2)Af l=  W (2)* obtained from the two K flows in 
question through A transformations discussed before are isomorphic. We 
show now that if this holds then the two K flows in question must 
themselves be isomorphic. Now, as explained in the preceding paragraph, 
the assumed isomorphism between the Markov processes means that 

V W  0)* V -1 = Wt (2)* (4.1) 

where V is the unitary operator induced by a measure-preserving transfor- 
mation S from the phase space of the flow Tt 0) to that of T, (2). Using the 
fact that A,. (i = 1,2) are functions of "operator time" of the respective K 
flows we easily find that 

w(i)* = AiU,(OAT'= U,(')[ ut(i)*AiUt'i)A7 -' ] 

Here Ai may be easily computed to be 

( h,(X + t) 
hi(X ) dF(i)+ P_= 

with F (i) denoting the spectral family of the "operator time" of K flow U (i) 
and 

A i = fh,()t) dF(a i) + P 

T h u s  ~k i is a positive and self-adjoint operator and Wt (0. = Ut(~ with U, (0 
unitary and Ai >t 0 represents the "'polar decomposition" of the operator 
Wt (0.. The important point is that the unitary part in the polar decomposi- 
tion of l, Vt (0. coincides with the group Ut (i), this result being a consequence 
of the fact that A i are functions of operator time. Condition (4.1) may be 
rewritten now as 

(vu,(')v*)(vLv*)= w, (2)* 

Since VUt(I)v * is unitary and VA 1 V* >1 0 both sides of the above equation 
provide a polar decomposition of Wt (2)*. Uniqueness of polar decomposi- 
tion then entails 

VUt(l)v * = Ut (2) 

which means that the transformation S from which V is induced satisfies 

STt(1)S - 1 = Tt(2) 
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In other terms, the two K flows are isomorphic. We have thus established 
the following proposition. 

Proposition 1.3 Markov processes obtained, through nonunitary A 
transformation described in Section 3, from nonisomorphic K flows, are 
necessarily nonisomorphic. 

The preceding discussion shows also that the symmetry group of the 
Markov process IV* = A U t A -  1 associated with the K flow T t is necessarily 
a subgroup of the symmetry group of the K flow in question. 

In fact, a symmetry operation of the Markov process would corre- 
spond to a (positivity-preserving) unitary operator V such that VI, Vt* V-1 
= Wt*. But this implies, as before, that VU t V-1 = Ut ' which means that V 
is a symmetry operation for the K flow too. One thus finds that the passage 
to the stochastic description through nonunitarity transformation as de- 
scribed in Ref. 1 and here is expected to lead also to symmetry breaking. 
We have already remarked that this passage necessarily involves breaking 
the symmetry between positive and negative directions of time. It would be 
interesting to examine whether additional symmetries, such as space inver- 
sion symmetry, can be broken by this procedure. (16) 
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